Technical University of Denmark

DJE

oo
oo

02561 Computer Graphics

Extending Drawing Program
with Quadratic Bezier Curves & Shader-
Computed Circles

Author:
Esben Damkjaer Sgrensen (s233474)

Portfolio link:
https://cse-cg-worksheets.pages.dev/

December 171, 2023

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark
S$233474 Project Report December 17, 2023

Table of Contents

R 1111 T [t [0 3
B BV« T o T ol R 4
C T 1171 (= £ T=1 1 T 1 1 [TR 5
3.1. BEZIEK CUIVES ...uuuueeieeuinneiinnuueeuueeuunetueetuneeueeataeasaaaasaaasaassassnsssnsssnssnns 5
3.2. Shader-computed CIrclescciiiiiiiiiiiiiiiiiiisreesssisssstrsessssssssssssssssssssnes 6
R - X1 | 3 8
4.1. QUAAratiC BEZIEr CUIVES.........cceeeiiiiiiiiiiiiiiiiseetseesssssssssssssssssssssssssssssssnssssssssssnsssnnnnns 8
4.2, Shader-computed CIrclescoiviiiiiiiiiiiiiiiiiereesssisssstrsesssssssssssssssessssnes 8
L 2 ol 7 [0 o 10
LI 8 T Tl 7 o T N 11

Page 2 of 11

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark
$233474 Project Report December 17", 2023

1. Introduction

This report presents a solution to extend part 4 of worksheet 2 to incorporate quadratic Bezier
curves into the drawing tool. Additionally, it suggests a different way of rendering circles than
originally developed in the worksheet.

The original drawing tool developed as part of the worksheet utilized WebGL to interact with
the underlying graphics hardware of the computer and render this onto an HTML canvas. Thus,
this project similarly uses WebGL.

The original implementation only performed a single draw call after a user operation. In the
worksheet implementation, the user can draw three types of figures; that is, points, triangles,
and circles. The circles are n-sided regular polygons, made up of a sufficient number, n, of
triangles to appear circular. Points consist of two right triangles to form a small square.

The user can draw these, by choosing a drawing mode. E.g., when in the circle drawing mode,
and the user places a point of one color, and a second point of another color, the program will
create a circle, with its center in the first point, and the periphery through the second point.
The color of circle is a linearly interpolated gradient from the center to the periphery of the two
points’ colors.

In figure 1 is shown an example drawing made with this drawing tool, however besides the
circle, it doesn't provide any way to draw custom curves, which this report seeks to provide a
solution for. The figure also clearly demonstrates how the circle is made up of an n-gon, of
which the sides are easily countable, which this report will look into eliminating.

figure 1: Example drawing from the original drawing tool

Page 3 of 11

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark
S$233474 Project Report December 17, 2023

2. Approach

As this report discusses a solution to extend the drawing program developed in part 4 of
worksheet 2, the solution will similarly use standard web technologies to enable execution of
the program directly in the browser.

In short, HTML is used to describe the structure of the interface, that the user will interact with
to choose what tools to use on the canvas.

Whereas HTML describes the structure of a webpage, JavaScript is a Turing complete
programming language, that can be used to implement the functional behavior of the webpage.

As mentioned in the introduction, the original drawing program utilized the WebGL API to
interact with the GPU. It does so by providing an API, that wraps the lower-level graphics API,
OpenGlL, and as such the APIs are very similar. This APl enables the developer to write GPU
accelerated programs called shaders, which can be used to render an image to a HTML canvas.

To achieve the functionality to draw quadratic Bezier curves in the drawing program, this report
proposes a solution, that uses a HUD (Head-Up Display). That is a transparent overlaying canvas
on top of the WebGL canvas, that shapes can be drawn onto, which will appear on top of the
below canvas. Rendering quadratic curves with a shader is not the most trivial task, and the
Canvas API provides a 2D context, which exposes methods to draw various figures including
quadratic Bezier curves onto the canvas by only specifying the start, control, and end points of
the curve.

To achieve a better approximation of the circle, the new drawing program will try to render the
circle from the circle equation seen in equation 1 using a fragment shader.

(x—x)* + (v —y0)? =17

equation 1: circle equation

Page 4 of 11

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark
$233474 Project Report December 17, 2023

3. Implementation

To implement the HUD, another canvas was introduced in the HTML-file of the project, as
showcased in listing 1. Both canvases were given the absolute positioning property, such that
they both are positioned relative to their common parents. By not specifying any more than the
z-index, the canvases are positioned on top of each other, ordered by the z-index.

1. <div id="canvasStack" style="width: 512px; height: 512px">
2. <canvas id="glCanvas" width="512" height="512"

3. style="position: absolute; z-index: 0;"

4. ></canvas>

5. <canvas id="hudCanvas" width="512" height="512"

6. style="position: absolute; z-index: 1"

7. >

8. </canvas>

9. </div>

listing 1: Stacked canvases

Inside the JavaScript file, is the code that initializes the WebGL context, compiles the shaders
etc. Additionally, it also handles the logic that is executed upon events firing such as click
events.

3.1. Bezier curves

Inside the event listener, that listens for mouse clicks on the canvas, is an if statement, that
handles the logic for each drawing mode. listing 2 shows how the quadratic Bezier is drawn
using the Canvas API’s 2D context by initializing a path with a given start point. The quadratic
curve is then specified with the control and end point.

1. } else if (modeSelect.value === "bezier") {

2 if (shapeBuilderPoints.length >= 3) {

3 let deleteCount = shapeBuilderPoints.length * pointVertices.length;
4. let start = vertices.length - deleteCount;

5. vertices.splice(start);

6 colors.splice(start);

7
8
9

let startPoint = toHudCoordinates(shapeBuilderPoints[@], hud);

10. let controlPoint = toHudCoordinates(shapeBuilderPoints[1], hud);
11. let endPoint = toHudCoordinates(shapeBuilderPoints[2], hud);
12.

13. hudCtx.beginPath();

14. hudCtx.moveTo(startPoint[0], startPoint[1]);

15.

16. hudCtx.quadraticCurveTo(

17. controlPoint[0],

18. controlPoint[1],

19. endPoint[@],

20. endPoint[1]

21.)

22.

23. hudCtx.strokeStyle = rgbToHex(shapeBuilderColors[0]);

24, hudCtx.stroke();

25.

26. shapeBuilderPoints = [];

Page 5 of 11

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark

$233474 Project Report December 17, 2023
27. shapeBuilderColors = [];

28. }

29. }

listing 2: Drawing mode — Bezier curves

The variable shapeBuilderPoints is a list, that keeps track of mouse click points since last shape;
thus, the curve is only drawn once the user has clicked three times on the canvas.

However, the points stored in the shapeBuilderPoints are specified according to the OpenGL
coordinate system, but the 2D context uses screen pixel coordinates. That’s why the auxiliary
function toHudCoordinates is called on the points.

3.2. Shader-computed circles

Just like the Bezier curve, the shader-computed circles were added as another case to the
drawing mode if-statement as seen in listing 3. Just like the original circle implementation, this
drawing mode assumes the first point is the center of the circle, and the second lies on the
periphery of the circle.

The radius is calculated from these two points, and a circle object is pushes to a list of all the
circles. When the circle is rendered, it is done using the draw call in triangles mode. For that
reason, another list called circleBounds, contains all the vertices, that make up the triangle-
pairs, that make up the bounding box for every circle. These triangles simply form a square,
that has a 2r side-length.

1. } else if (modeSelect.value === "shadercircle") {
2. if (shapeBuilderPoints.length >= 2) {

3. let deleteCount = shapeBuilderPoints.length * pointVertices.length;
4. let start = vertices.length - deleteCount;
5. vertices.splice(start);

6. colors.splice(start);

7.

8. let pl = shapeBuilderPoints[0];

9. let p2 = shapeBuilderPoints[1];
10.
11. let radius = Math.abs(
12. length(
13. subtract(pl, p2)
14.)
15.)
16.
17. circles.push(
18. {
19. center: pil,
20. radius: radius,
21. innerColor: shapeBuilderColors[9],
22. outerColor: shapeBuilderColors[1],
23. }
24,)
25.
26. circleBounds.push(
27.
28. translate(
29. squareVertices.map(vert => scale(radius, vert)),

Page 6 of 11

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark
$233474 Project Report December 17, 2023

30. pl

31.)

32.)

33.

34. shapeBuilderPoints
35. shapeBuilderColors
36. }

37. }

n
—r—

listing 3: Drawing mode - Shader-computed circle

To achieve a higher separation of concerns and better readability, the shaders have been
moved into separate files. There are four shaders, two vertex shaders and two fragment
shaders. One of the shader pairs is responsible for rendering the triangles of the original
implementation. The other shader pair named circle.[frag/vert], is responsible for rendering the
circles in the new implementation. As seen in listing 4, the shader has four inputs in the form of
uniforms. To render a circle, it uses the circle equation to determine if a fragment is inside or
outside the circle. In case it is outside the circle, it discords that fragment. If it is inside the
circle, it colors the fragment a mix of the inner and outer colors based on how far the fragment
is from the center of the circle.

#version 300 es
. precision mediump float;

1

2

3

4. uniform vec2 center;
5. uniform float radius;
6
7
8
9

. uniform vec3 innerColor;
. uniform vec3 outerColor;

10. in vec2 fragCoord;
11. out vec4 fragColor;

12.

13. void main() {

14. float a = (fragCoord.x - center.x) * (fragCoord.x - center.x);
15. float b = (fragCoord.y - center.y) * (fragCoord.y - center.y);
16. float ¢ = radius * radius;

17.

18. float res = a +b - c;

19.

20. if (res > 0.0) {

21. discard;

22. } else {

23. vec3 color = mix(innerColor, outerColor, sqrt(a + b) / radius);
24.

25. fragColor = vec4(color, 1.0);

26. }

27.

28. }

listing 4: Fragment shader for circle rendering

Since uniforms are static across a draw call, all circles must be drawn by separate draw calls. So,
in addition to the original implementations single draw-call, there’s not a loop that iterates over
all circles, and draws them to the screen.

Page 7 of 11

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark
$233474 Project Report December 17", 2023

4. Results

The following two sections showcase the results after using newly implemented tools.
4.1. Quadratic Bezier Curves

figure 2 shows a number of quadratic curves drawn with the new HUD tool in various colors
specified by the user, as well as a few other figures drawn with the program.

figure 2: Screenshots of the result after drawing a few quadratic Bezier curves

4.2. Shader-computed circles

In figure 3 is an attempt to draw two similar circles, one with the new circle rendering
implementation on the left-hand side, and another with the old implementation on the right-
hand side, which uses a 10-sided regular polygon.

Page 8 of 11

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark
$233474 Project Report December 17", 2023

figure 3: Screenshot of the shader-computed circles (lhs) next to the original implementation of circles (rhs).

Page 9 of 11

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark
S$233474 Project Report December 17, 2023

5. Discussion

One obvious downside of using the head-up display, is that everything drawn on the head-up
display, will always appear on top of the canvas below, and this cannot be changed. For that
reason, the quadratic Bezier curves will always appear on top of everything else regardless of
the drawing order. This is not ideal for a general-purpose drawing program. This could be fixed
by either drawing all shapes using the canvas 2D context or writing a custom implementation of
the quadratic Bezier curves, that uses the WebGL context.

In general, drawing order wasn’t considered in this project, and thus the new implementation
of the circle rendering, will also cause all the circles to appear on top of every other shape
drawn with the program besides the quadratic curves. This could however be fixed fairly
simple, by specifying the z-coordinate of the vertices drawn by the program. By keeping track of
the drawing order, the z-coordinate could be set accordingly, but mapped to the interval [-1, 1],
as this is within the bounds of the NDC cube, which is rendered to the screen.

In figure 3, it can be seen, that the new implementation of the circle is a closer approximation
of an actual circle, only limited by the resolution of the screen. If you look closely, you can see
the pixels clearly, as there’s no antialiasing on the circle. If anti-aliasing was applied, the circle
would appear even smoother to the viewer.

Without having performed any benchmarks, one can imagine, that the new implementation of
the circle rendering is less efficient. This is especially due to the square root operation, which is
performed for every single fragment inside a circle. However, it is no match for my laptop, in
the simple use case of this drawing program.

It is possible to achieve a similar result with the old circle implementation, by simple increasing
the number of sides in the regular polygon. However, in case a zoom feature is added, this
count would have to be increased, as the user zooms in, or the linear sides will become
noticeable again.

Page 10 of 11

Esben Damkjaer Sgrensen 02561 Computer Graphics Technical University of Denmark
$233474 Project Report December 17, 2023

6. Conclusion

This project successfully utilized the canvas API’s 2D context to implement a Bezier curves head-
up display. However, with the downside, they will always appear on top of everything else,
which is not ideal for a drawing program.

Additionally, using the new shader-computed circles proved a better approximation of an
actual circle for the given zoom level and circle size, when using 10-sided regular polygons. The
edge of the circle appears a little coarse due to, and future improvement could be to add anti-
aliasing to smoothen out the edge.

The deployed version of the full portfolio can be found at:
https://cse-cg-worksheets.pages.dev/

Page 11 of 11

