
Transformation matrices used
Translation:

𝑇"𝑡! , 𝑡" , 𝑡#% = '

1 0 0 𝑡!
0 1 0 𝑡"
0 0 1 𝑡#
0 0 0 1

*

Rotation around x and y axis:

𝑅!(𝜃) = '

1 0 0 0
0 cos(𝜃) − sin(𝜃) 0
0 sin(𝜃) cos(𝜃) 0
0 0 0 1

*

𝑅"(𝜃) = '

cos(𝜃) 0 sin(𝜃) 0
0 1 0 0

− sin(𝜃) 0 cos(𝜃) 0
0 0 0 1

*

Orthogonal projection:

𝑂𝑃(𝑙, 𝑟, 𝑏, 𝑡, 𝑛, 𝑓) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2

𝑟 − 𝑙
0 0 −

𝑙 + 𝑟
𝑟 − 𝑙

0
2

𝑡 − 𝑏 0 −
𝑡 + 𝑏
𝑡 − 𝑏

0 0
−2
𝑓 − 𝑛

−
𝑓 + 𝑛
𝑓 − 𝑛

0 0 0 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

View at transform
The transpose operator is assuming column vectors.

𝑙𝑜𝑜𝑘𝐴𝑡"𝑒𝑦𝑒IIIIIII⃗ , 𝑎𝑡III⃗ , 𝑢𝑝IIII⃗ % = N
𝑥𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ $ −𝑥𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ ⋅ 𝑒𝑦𝑒IIIIIII⃗
𝑦𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ $ −𝑦𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ ⋅ 𝑒𝑦𝑒IIIIIII⃗
𝑧𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ $ −𝑧𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ ⋅ 𝑒𝑦𝑒IIIIIII⃗

T

where;

𝑧𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ =
𝑎𝑡III⃗ − 𝑒𝑦𝑒IIIIIII⃗
U𝑎𝑡III⃗ − 𝑒𝑦𝑒IIIIIII⃗ U

𝑥𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ =
𝑧𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ × 𝑢𝑝IIII⃗
|𝑧𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ × 𝑢𝑝IIII⃗ |

𝑦𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ = 𝑥𝑎𝑥𝚤𝑠IIIIIIIIIII⃗ × 𝑧𝑎𝑥𝚤𝑠IIIIIIIIIII⃗

Perspective projection:
Fov is assuming degrees and not radians.

𝑃𝑃(𝑓𝑜𝑣, 𝑎𝑟, 𝑓, 𝑛) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1

tan [𝑓𝑜𝑣2 \ ⋅ 𝑎𝑟
0 0 0

0
1

tan [𝑓𝑜𝑣2 \
0 0

0 0
−(𝑓 + 𝑛)
𝑓 − 𝑛 −

2𝑓 ⋅ 𝑛
𝑓 − 𝑛

0 0 −1 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Application of transform matrices

Part 1 – Isometric cube:

𝑣⃗% = 𝑂𝑃(−1,1, −1,1,0.01,1000) ⋅ 𝑙𝑜𝑜𝑘𝐴𝑡 ^_
0
0
0
` , _

1
1
1
` , _

0
1
0
`a ⋅ 𝑇(0.5,0.5,0.5) ⋅ 𝑣⃗

Part 2 – Perspective cubes:

Cube 1 – 1-point perspective:

𝑣⃗% = 𝑃𝑃(45, 1,0.01, 1000) ⋅ 𝑙𝑜𝑜𝑘𝐴𝑡 ^_
0
0
−7
` , _

0
0
1
` , _

0
1
0
`a ⋅ 𝑇(2, −1.5,0) ⋅ 𝑣⃗

Cube 2 – 2-point perspective:

𝑣⃗% = 𝑃𝑃(45, 1,0.01, 1000) ⋅ 𝑙𝑜𝑜𝑘𝐴𝑡 ^_
0
0
−7
` , _

0
0
1
` , _

0
1
0
`a ⋅ 𝑇(0, −1.5,0) ⋅ 𝑅"(40) ⋅ 𝑣

Cube 3 – 3-point perspective:

𝑣% = 𝑃𝑃(45, 1,0.01, 1000) ⋅ 𝑙𝑜𝑜𝑘𝐴𝑡 ^_
0
0
−7
` , _

0
0
1
` , _

0
1
0
`a ⋅ 𝑇(0, −1.5,0) ⋅ 𝑅!(40) ⋅ 𝑅"(40) ⋅ 𝑣

